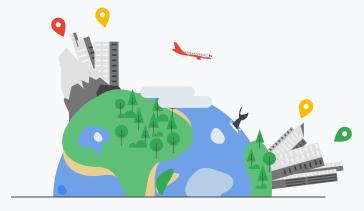
Google Cloud


The 42nd Symposium on Engineering in Astronomy

Google Cloud Manufacturing Data Engine

クラウドで実現される IoT データ基盤とAI ユースケース

2023 年 1 月 17 日 グーグル・クラウド・ジャパン合同会社 Industry Director, Manufacturing 澤近 房雄

Google Cloud 会社紹介

Google のミッション

世界中の情報を整理し、 世界中の人々がアクセスできて 使えるようにすること。

Organize the world's information and make it universally accessible and useful.

Google Cloud 紹介: Best of Google を企業向けに提供

Alphabet を持株会社とし、中核企業である Google と最先端テクノロジーを活用した実験的戦略事業会社で構成

Google のサービス基盤と技術を企業の皆さまへ

Google Cloud Platform

Datacenter as a Computer 世界最大データ量を分析行うDC

信頼できる高可用性のサービス

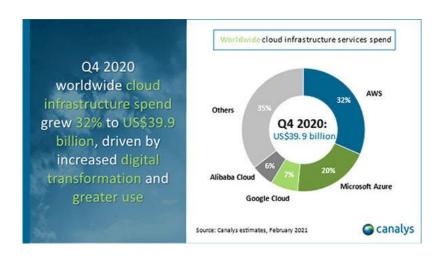
- 信頼性と稼働時間を重視して設計されているアプリケーション とネットワークのアーキテクチャ
- 対象サービスに対して、Google Cloud はサービスレベル契 約(SLA)を通じて信頼性を約束する1
- 各対象サービスの SLA の詳細は cloud.google.com/terms/sla をご参照ください

完全にプライベートなネットワーク

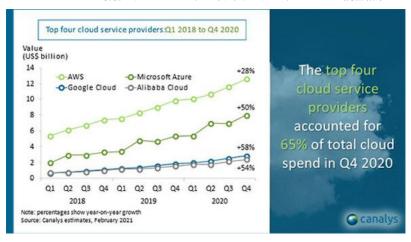
- 高速で一貫性のあるスケーラブルな パフォーマンスを保証
- 完全にプライベートなネットワークを備えたパブリック クラウド プロバ イダーである

メンテナンスでの計画 停止や再起動が不要に

計画的ダウンタイムの大幅短縮や回避


- 対象のマネージド サービスはデータベースに最新のパッ チや更新プログラムを自動的に適用できる
- 今回提案対象の Compute Engine は、システムメンテナ ンス中であってもプラットフォームの停止はなく利用が可 能²

Google Cloud はソリューションラインアップを強化



Google Cloud は高い成長率を継続

過去1年の成長率は、AWSが28%、3位のMicrosoft Azureが50%、3位のGoogle Cloudが58%と3社の中では最も高い成長率を見せています。

最新のグローバルにおけるクラウドインフラサービスの調査結果

出典:https://www.canalys.com/newsroom/global-cloud-market-g4-2020

Google はクラウドビジネスに今後も引き続き大きな投資を継続します

デジタル庁、ガバメントクラウドとしてGoogle Cloud を採用

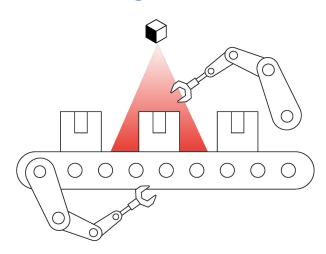
/ 政府のセキュリティ一評価制度 (ISMAP)の基準 を満たす(ISMAP へ登録されたクラウド)

/ ガバメントクラウドとして安全面や事業継続性など約350の要件を満たす

/ 政府クラウドは原則として全ての自治体が使うシステム

両社のサービスは、「アマゾン・ウェブ・サービス (AWS)」と「グーグル・クラウド・プラットフォーム(GCP)」。政府クラウドは原則として全ての 自治体が使うシステムで、2025年度までの整備を 目指す。税金や児童手当など様々な手続きでの活用を 規定する。

出典: https://www.yomiuri.co.jp/economy/20211026-OYT1T50437/


Google Cloud Manufacturing Data Engine データ活用の民主化

Google Cloud

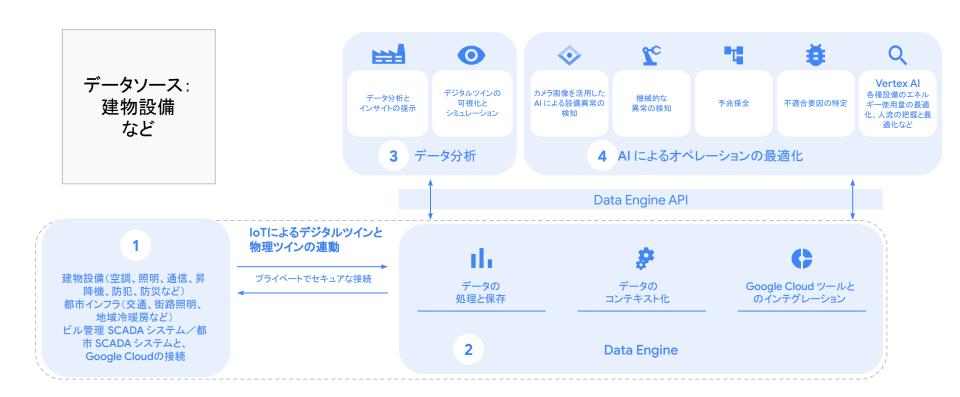
Manufacturing Data Engine

データ活用の民主化

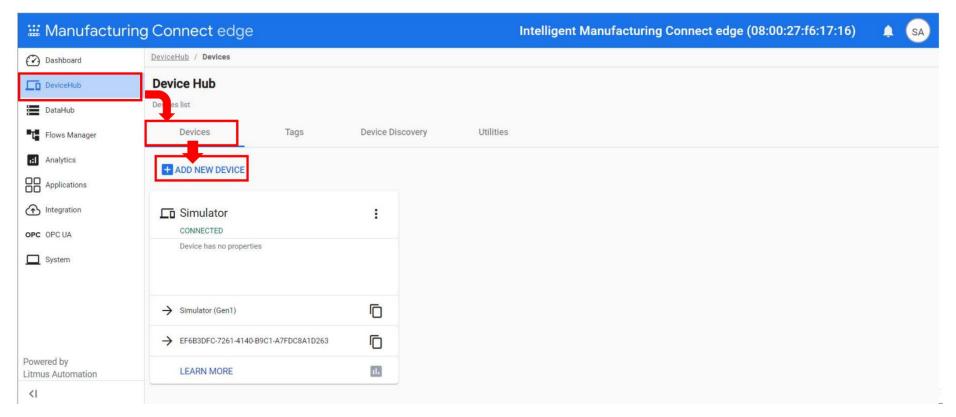
Google Cloud

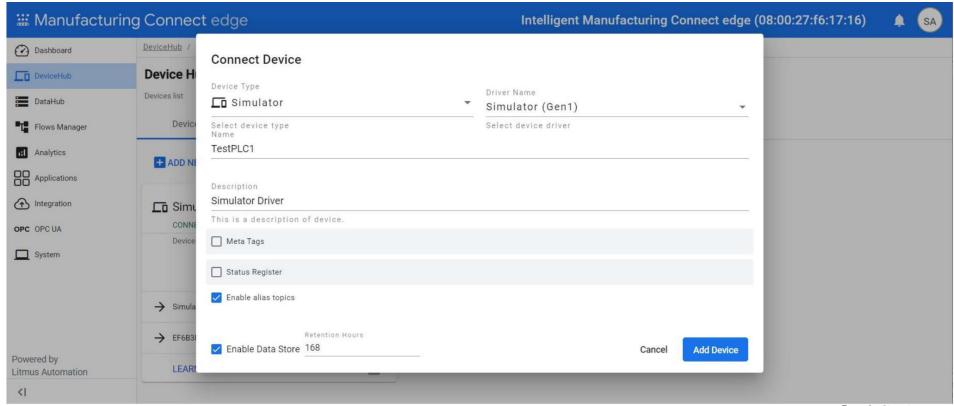
Google が持つデータ分析とAI の技術によって、組織がオペレーションデータを民主化し活用できるようにすることで、適切な意思決定を可能にする。

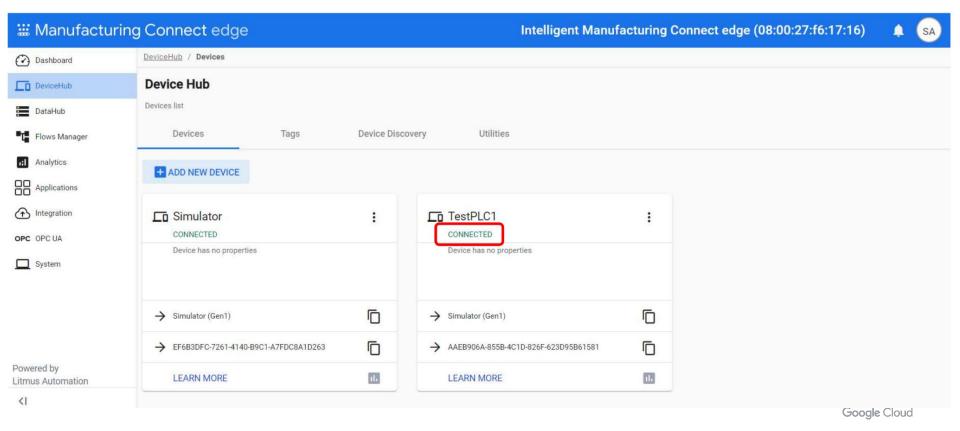
Manufacturing Data Engine from Google Cloud

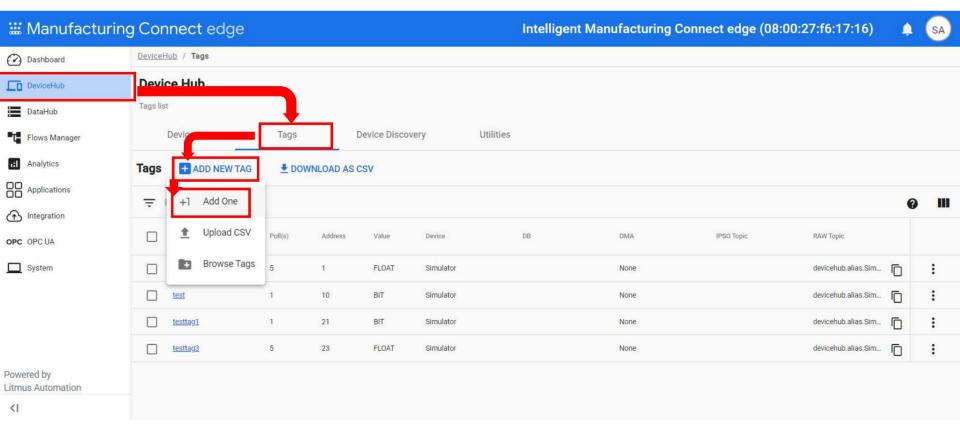

先進的なデータ分析と AI の技術により、製造業における変革を加速

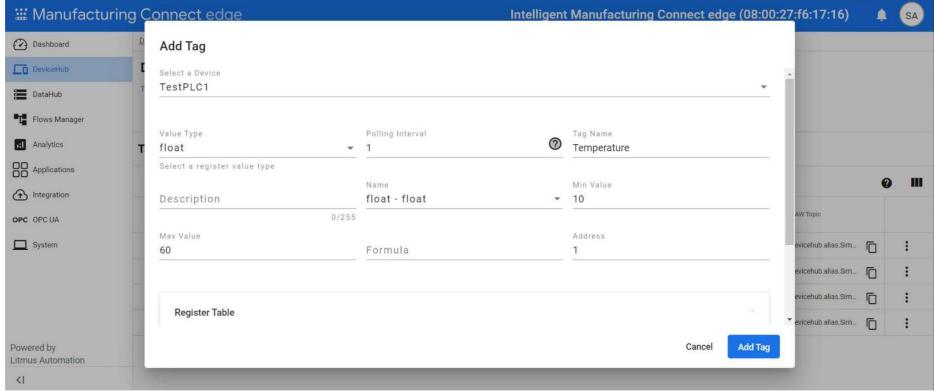
- 数百におよぶ産業用通信プロトコル、エッジワークロードの実行、 Google Cloud との密接な統合が可能な業界をリードするファクト リコネクティビティ製品。
- 工場データを処理、コンテキスト化、保存する強力なマニュファクチャリングデータエンジンで、様々なユースケースですぐにデータ活用。
- ビルトインされた分析と AI のユースケース群で、即座に効果を出し、大規模な展開も可能。 Vertex AI などの Google Cloudツールを活用して、迅速にカスタムツールを作成。

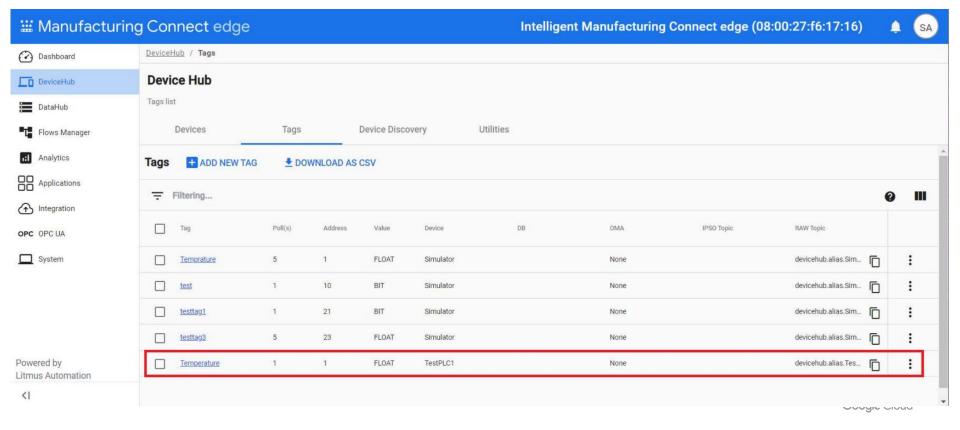

製造オペレーション向けの Google Cloud ソリューション 4 つの機能から構成されるモジュラー型の導入アプローチで エコシステム パートナーとともにソリューションを提供


建物・設備および都市システムのデジタルツインと 各種ユースケースによる高機能・高性能な都市の実現


Manufacturing Connect の設定(デバイス追加画面の例)


Manufacturing Connect の設定(デバイス追加画面の例)


Manufacturing Connect の設定(デバイス追加画面の例)


Manufacturing Connect の設定(タグ追加画面の例)

Manufacturing Data Engine のエッジソリューション Manufacturing Connect の設定(タグ追加画面の例)

Manufacturing Data Engine のエッジソリューション Manufacturing Connect の設定(タグ追加画面の例)

アジャイルなIoTシステムの即時導入とユースケースの実証 効果を確認しながら大規模な展開へ

導入効果のビジョンと PoC スコープの 定義

(想定:2~4週間程度)

ビジョン & PoC スコープ

Google のアカウントマネージャ および ソリューションマネージャ

> お客様 (OTご担当&ITご担当)

エッジゲートウェ イで設備との接 続を設定

Google Cloud でデータエンジ ンをデプロイして 構成

ビルトインユー

スケースを活

用、またはカス

タムユースケー

スを開発

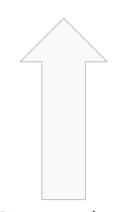
ラピッドプロトタイピング

最初の建物への 展開

次の建物、 都市システムへの 迅速な展開

大規模な展開 (想定: 2~4か月程度)

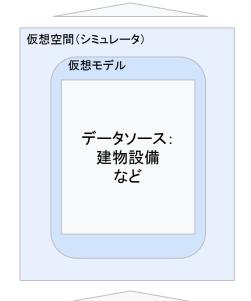
お客様(OTご担当&ITご担当)と システムインテグレータによる 合同チーム


(想定:4~8週間程度)

お客様または システムインテグレータ

デジタルツインがつなぐ情報基盤とサービス(導入前)

経験と実績に基づくデジタルサービス



一方通行のサービス提供と時間 差のあるフィードバック (現実世界での仮説検証)

デジタルツインがつなぐ情報基盤とサービス(導入後)

経験と実績に基づくデジタルサービス

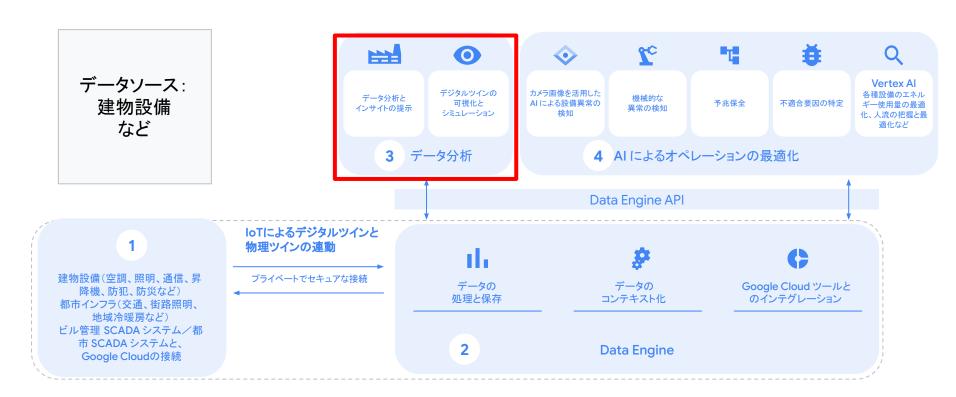
デジタル技術による情報ループの 補完とリアルタイムフィードバックと シミュレーション (仮想空間での仮説検証)

センシングデバイスによる 実測値の取得

- ·出来事
- 計測値

IoT & AI

(Google Cloud の強み) 実測値に基づく


- ・精緻な仮想空間
- 精緻な仮想モデル

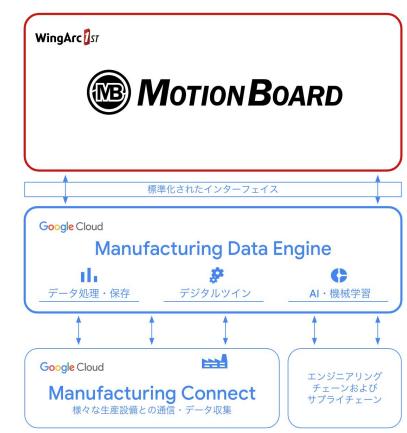
BIM & 建物 & 都市設計の情報基盤

Google Cloud Manufacturing Data Engine

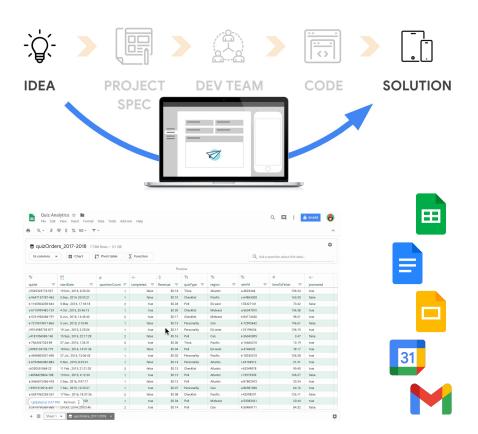
ユーザ価値を提供するためのエコシステム

建物・設備および都市システムのデジタルツインと 各種ユースケースによる高機能・高性能な都市の実現

WingArc1st とGoogle Cloud が推進するデータ活用の民主化と 製造業DXの加速


WingArc1st

製造オペレーション向けの 優れたビジュアライゼーション


Google Cloud

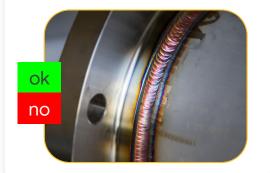
IoT データ基盤 と AI のユースケース群による エコシステム

Google Workspace の製造領域での活用

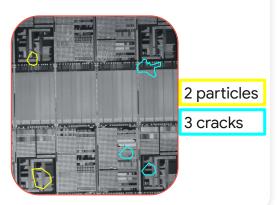
ノーコードで即日導入できる使いやすいツールで分析、帳票作成、可視化

Google Workspace は簡単にノーコードで Manufacturing Data Engine のデータ活用が 手軽に始められます。

- スプレッドシート
 直接 BigQuery にアクセス、表計算で大量のデータ処理、グラフ作成、AI/機械学習の適用など
- ドキュメント文書作成機能で定型の帳票作成
- AppSheet ノーコードでリアルタイムの稼働監視用の 画面作成


建物・設備および都市システムのデジタルツインと 各種ユースケースによる高機能・高性能な都市の実現

Visual Inspection AI: AI が 3 つの方法で不適合を検出 合否判定だけではなく、不適合に関する詳細情報をデータ化して分析


異常の検知

通常とは異なる状態を 不適合として検出

不適合の検出と場所の特定

複数の領域固有の不適合を 検出して場所を特定 (へこみ、ひび、割れ目など)

組立の確認

組立後の製品の部品の欠損や 取付の不適合を検出

2 connectors **OK**

7 solder pins **OK**

battery clip **OK**

case screw **NOK**

antenna pin **NOK**

•••

Root Cause Identification:不適合要因の特定

操業担当者、SCADA および MES システム等 対象を特定した、情報に基づく意思決定 品質データとセンサーデータの組合せに基づいて AI が導き出した、推奨される対策 Visual Manufacturing Data Engine Inspection Al by Google by Google

品質の変動や不適合の主要因を迅速に特定して、 必要な対策を実施。

- 品質を向上させ、安定させるために、 最も有効な対策を特定
- 不適合の原因を排除
- 保全計画の最適化
- 設備の校正作業を改善
- 対策として操業担当者の研修を実施

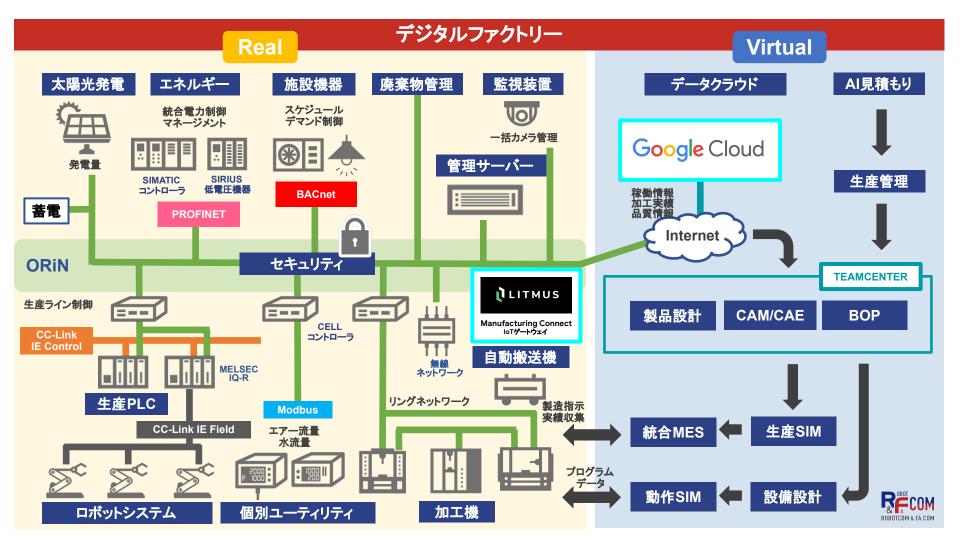
Machine-level anomaly detection: 機械的な異常の検知

Google 検索で使用されている強力な AI エンジンを応用して、機械の時系列データを分析

- Manufacturing Data Engine (MDE) によって提供されるリアルタイムの機械センサーデータのストリームを利用
- 多角的に表出する傾向や異常を検知(ノイズ、振動、温度など)
- フルマネージドでサーバーレスのAPI サービス
- 様々なユースケースを推進:保全作業の必要性の特定、校正作業の改善、OEE 低下の原因の発見など

事例紹介

ロボコム・アンド・エフエイコム南相馬工場


エネルギーマネジメントシステム

稼働監視システムによる原単位管理

製品単位での原単位管理

項目	管理方法
材料費	生産管理システムの購買管理
設計費•作業費	生産管理システムで作業時間管理モバイル端末, QRコード)
減価償却費	チャージ(加工機により固定) x 加工時間(稼働監視システムで算出)
電気使用量	(加工機+空調+LED) x 加工時間(稼働監視システムで算出)
水使用量	流量 x 加工時間(稼働監視システムで算出)
エア使用量	流量 x 加工時間(稼働監視システムで算出)
加工廃棄量	AI見積システムにより算出

細かな電力量、エア、水使用量管理によ製品毎の原単位管理 (究極の原単位管理システムを実現!)

稼働監視システム画面例(カーボンフットプリント)

Google