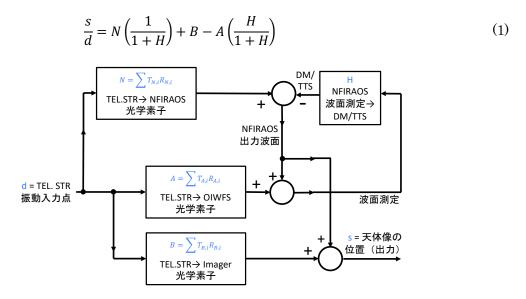
TMT 第一期観測装置 IRIS の振動解析

〇鈴木竜二、大渕喜之、浦口史寛、清水莉沙、早野 裕(国立天文台)、Glen Herriot, Brian Hoff, Joeleff Fitzsimmons (NRC-H), Robert Weber (Caltech)

概要

観測所の様々な機器に起因する振動は、望遠鏡、補償光学系、観測装置内の光学素子を揺らし、結像性能を劣化させる。振動による結像性能の劣化は、回折限界の性能を持つ観測装置では既に問題になっており、補償光学の性能が飛躍的に向上する TMT を含む次世代の望遠鏡では更に重要度が増す。本講演では TMT の第一期観測装置 IRIS と補償光学に関して、周波数空間における振動解析の手法と結果を紹介する。

1. イントロダクション


可視近赤外域の望遠鏡の大型化と補償光学の性能向上に伴って、光学素子の振動が結像性能に与える影響が重要さを増している。ここでいう振動は、観測所を構成する機器由来の振動、望遠鏡が動くことによる振動、風圧による振動、観測機器由来の振動、そして地面からの振動も含む。光学素子が振動すると、天体の像が振動し、補償光学が提供する点源分布関数(PSF)のピーク値が低減する。回折限界のPSFのピーク値に対する実際のピーク値の比をストレール比と呼ぶ。TMTでは、同じ点源の天体を同じS/Nで観測するのに必要な観測時間の逆数を「点源感度」と呼んでいる。点源感度はストレール比の2乗に比例するため、振動によるストレール比の低減は観測感度に大きな影響を与える。振動の結像性能への影響は、補償光学が高いレベルで機能し始めた比較的最近から問題になっている。TMTでは初期の段階から振動の重要性を認識しており、設計の段階から振動モデルを用いたバジェットの配分と設計検証を行っている[1]。

補償光学は地球大気による波面のゆらぎを補正すると同時に、観測装置に搭載された低次波面センサーで測定可能な範囲で振動もある程度補正する。ただし、補償光学による振動の補正は完璧ではなく、低次波面センサーと観測装置のカメラとの間の異なる振動や、低次波面センサーのコントロール速度よりも速い振動は補正できない。したがって、振動の影響を評価するには補償光学と観測装置を一つの系とみなして、光学、機械構造、制御を組み込んだ解析が必要となる。

本発表では、TMT の第一期観測装置である IRIS と第一期補償光学 NFIRAOS において、振動が結 像性能に与える影響を評価し、装置設計に反映する取り組みを紹介する。

2. 解析手法

我々が扱う振動は、その統計的な性質が規定されたランダムな振動を扱う「ランダム応答解析」である。ランダム応答解析を行う手段として、時間領域での解析と周波数領域での解析があるが、我々は主に計算スピードと IRIS を構成するサブシステムごとでの評価のしやすさから、周波数領域での解析を選択した。

図1:振動解析に用いたコントロールダイアグラム。

今回の解析では結像性能の指標として波面誤差(WFE)を採用するため、最終的に以下の式で振動→ 波面誤差を行う。

$$WFE^{2} = \int \left| \frac{s}{d} \times C \times p \right|^{2} df \tag{2}$$

ここでf は振動数、Cは天体像の動きを波面に変換する係数、pは望遠鏡から NFIRAOS に伝わる入力振動で、TMT 観測所のシステムレベルでの振動解析[1]から算出されている[2]。

3. モデル

図2に今回の振動解析で用いた FEA モデルを示す。IRIS は真空容器と、真空容器を支持し且つ NFIRAOS とインタフェースを取るためのサポート構造は詳細なモデルを使用している。低次波面センサーと撮像系は6自由度バネマスモデルと近軸レンズで単純化されており、この単純化モデルを使用してこれらサブシステムの固有振動数の要求を導出するのが、今回の振動解析の目的の一つである。

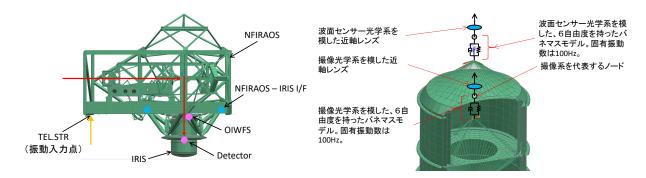


図2:振動解析に用いた FEA モデル。左:NFIRAOS と IRIS、右:IRIS の真空容器部分の拡大図と、 6自由度のバネマスと近軸レンズで簡略化した低次波面センサー、撮像系。

3. 結果

図3に振動解析の結果として波面誤差密度(式1の $|\frac{1}{a} \times C \times p|$)を示す。式1より波面誤差(tip/tilt 成分)を求めると7nm rms を得る。低次波面誤差の要求仕様は16nm rms であるため、現段階では要求を十分満たす結果が得られている。また今回の結果から、サポート構造及び真空容器の設計の妥当性が確認されたとともに、低次波面センサー、撮像系の固有振動数に関して、100 Hz 以上を目標とすることの妥当性も確認された。

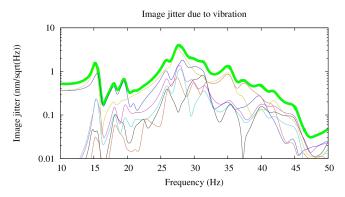


図3:IRIS 焦点面上での振動による波面誤差(tip/tilt 成分)。異なる細い実線は異なる自由度の振動を表し、太い緑の実線はそれらの自乗和の平方根である。

4. 考察

上記のように、簡略化したモデルでの解析では要求を満たす結果が得られているが、今後モデルを詳細化した際に要求を満たせなくなる可能性もあるため、現状のモデルで波面誤差を減らす可能性について考えておく。図3で最も波面誤差に寄与している振動数の上位2つ(15 Hz と 28 Hz)について、図4にモード形状を示す。2つのモードは共にIRISの真空容器が振り子のように振れるモードだが、15 Hzのモードは回転中心が真空容器の上、28 Hzのモードは回転中心が真空容器の下にある。IRISの入力側の焦点面(振動していないときにNFIRAOSの出力側の焦点面と一致)は真空容器の上部にあるため、15 Hzでの振動ではIRISの焦点面がNFIRAOSの焦点面に対してあまり動かず、逆に28 Hzでは大きく動いてしまう。この振動モードによる波面誤差を抑える方法は以下が考えられる。

(方法1)固有振動数を上げる。

- (方法2) 減衰率を上げる。もしくは passive/active damper を用いる。
- (方法3)補償光学で補正する。

方法 1 は、入力振動が周波数に反比例して小さくなる[2]ため f^{-1} の効果があるが、 $f \propto \sqrt{k/I}$ であるため、例えば振動を半分にするにはサポート構造の剛性(k)を 4 倍もしくは真空容器の慣性モーメント(I)を 1/4 倍にする必要があり現実的ではない。構造の減衰率は 2%を仮定しており、これを大きくすることは難しい一方で、passive/active damper の搭載は質量の制限から実現は難しいと思われる。方法 3 に関しては、(今回の結果とは別の理由で)2 つの手法が既に実装されている。一つはより速い読み出しが可能な低次波面センサーの導入、もう一つは LQG コントローラを用いた振動抑制機能の追加である。新しい低次波面センサーにより振動抑制の帯域が 30 Hz から 90 Hz に改善されるため、それに伴って振動も抑制されることが期待される。一方、LQG コントローラを用いた振動抑制は既存の望遠鏡の観測装置でも実装されており、振動の周波数が分かっていればその周波数のみピンポイントで振動を抑制することができる。この 2 つの手法で、必要であれば振動を更に抑制することができると考えている。

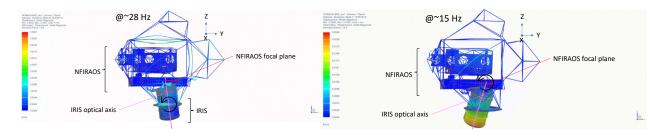


図4:波面誤差の悪化に最も寄与する上位2つの振動のモード形状。左:28 Hz、右:15 Hz。

5. まとめ

近年、補償光学の性能向上に伴って、振動による結像性能の悪化が観測性能/効率に与える影響が見えてきた。TMTでは設計初期から振動を重要な課題と位置づけており、望遠鏡、補償光学、観測装置を含むシステムレベルで振動を扱い、各サブシステムへの要求作成と性能検証を行ってきた。本講演では、TMT第一期観測装置の一つであるIRISについて、我々が採用している周波数領域での振動解析の手法を紹介した。また、NFIRAOSと簡略化した低次波面センサー、撮像系の光学/構造モデルにこの手法に当てはめた結果を紹介し、現時点で設計が要求を満たすこと、またサブシステムの設計に向け、低次波面センサー、撮像系への固有振動数の要求仕様の妥当性を確認した。今回取り扱った振動モードについて、今後もし振動を抑制する必要がある場合は、LQGコントローラを用いた振動抑制を考えている。次のステップとして、低次波面センサー、撮像系を個々の光学素子/マウントまで分解した詳細モデルを用いて、最終的な要求仕様の検証を行う予定であり、現在モデルの構築が完了している。

参考文献

- [1] MacMartin, D. G. and Thompson, H. 2014, Proc. SPIE, 9145
- [2] MacMartin, D. G. 2020, TMT internal technical document (TMT.SEN.TEC.20.008.REL01)