第43回 天文学に関する技術シンポジウム 2024年1月18・19日

すばる望遠鏡 MOIRCS のため の高効率広帯域グリズム開発

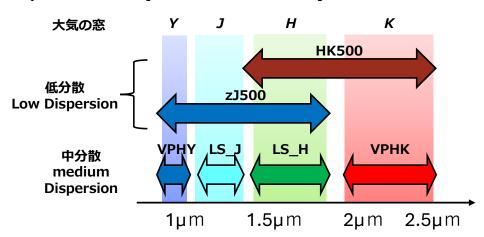
Development of Novel High-Efficiency & Wideband Medium-Dispersion
Grisms for MOIRCS

田中 壱(1)、 海老塚昇(2)、東谷千比呂(3)、服部尭(1)、小俣浩司(3)、本原顕太朗(3)、小山祐世(1)、美濃和陽典(1)、兒玉忠恭(4)、 Michael Lemmen (1)、 Brian Elms (1)、他

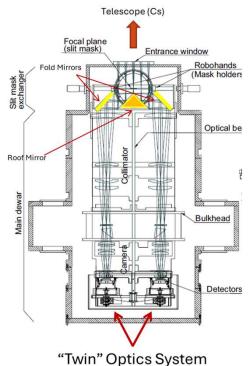
(1) Subaru Telescope, NAOJ (2)理研(3) ATC, NAOJ (4)東北大

Introduction: MOIRCS

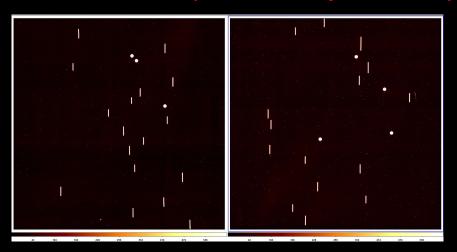
Multi-ObJect Infrared Camera and Spectrograph for Subaru 東北大を中心に製作。8 m超級での近赤外MOSとしては世界初の共同利用機 (2006年運用開始)。

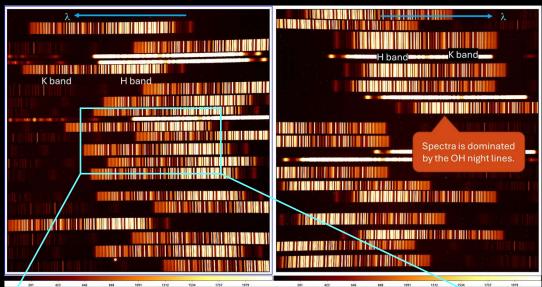

• $0.9 - 2.5 \mu m$, 4' by 7' FOV.

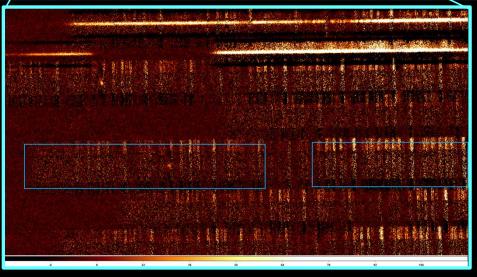
分光:


MOSマスクにより通常30-60天体を同時分光

• 分散素子: 低分散 (R~500) と中分散 (R~2000-3000) が選択可。

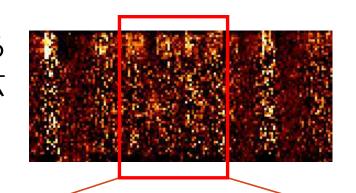

Grism name	Operating range [um]	Resolution (0.5" slit) (*1)
zJ500	0.9-1.78(*2)	464 (ch1) 463 (ch2)
HK500	1.3-2.3 (*3)	571 (ch1) 531 (ch2)
VPH-K	1.8 - 2.5	2680 @ 2.2um
LS-J LS-H	1.05 - 1.4 @ LS-J 1.4 - 1.9 @ LS-H	~3000





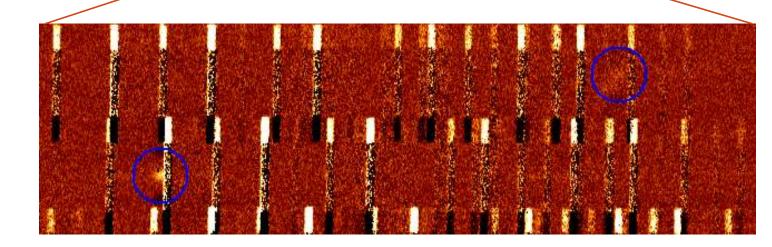
MOS DATA (Low Dispersion)

Medium-Dispersion Data


R~500 Low Dispersion data

almost filled by OH night emission lines (background).

R~3000 Medium-Dispersion Data A lot of "dark" regions between night lines.


中分散のパワー

近赤外の空は夜光で満たされているので、分散を上げて夜光の隙間を広げ、背景ノイズを下げる事が要。

MOIRCS中分散分光能力強化の動機。

Keck MOSFIRE

MOIRCSと同じ、近赤外多天体分光装置。2012年登場。 分散が高い。R~3000 to 4000。MOS ~20-30 objects.

強敵。

MOSFIRE is a NIR multi-object spectrograph in operation at the Cassegrain focus of the Keck I telescope since 2012. MOSFIRE was designed and built by a collaboration among UCLA, CIT, and UCSC under the direction of co-Principal Investigators Ian McLean and Chuck Steidel. Notable features of MOSFIRE include:

- . 6.1' x 6.1' field of view
- Teledyne H2RG HgCdTe detector with 2K x 2K pixels

Co-Principal Investigators:

. Up to 46 slits using a unique cryogenic robotic slit mask system that is reconfigurable electronically in under 5 minutes

Optics Lead Harland Epps (UCSC)
Instrumentation Lead Keith Matthews (CIT)

MOSFIRE References

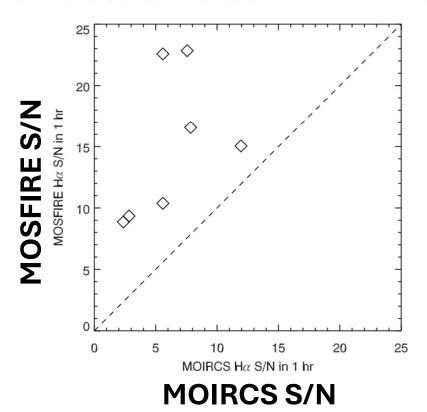
MOSFIRE References

MOSFIRE References

MOSFIRE References

MOSFIRE References

Ian McLean (UCLA)


Chuck Steidel (CIT)

The Team Keck Redshift Survey 2: MOSFIRE Spectroscopy of the GOODS-North Field

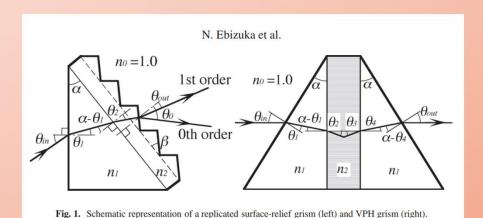
The Astronomical Journal, Volume 150, Issue 5, article id. 153, 17 pp. (2015).

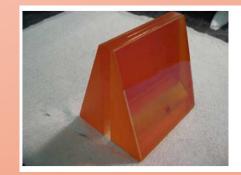
Gregory D. Wirth^{2,3}, Jonathan R. Trump^{4,5,6}, Guillermo Barro⁴, Yicheng Guo⁴, David C.

Koo⁴ Fengshan Liu⁴ Marc Kassis² Jim Lyke² Luca Rizzi² Randy Campbell² Robert W

"... On average, MOSFIRE achieves ~2–3× higher emission-line S/N than MOIRCS in the same exposure time, fully consistent with Keck's 47% greater collecting area and the 2–5× throughput advantage of MOSFIRE over MOIRCS."

R~330@MOIRCS vs. R~3600@MOSFIRE

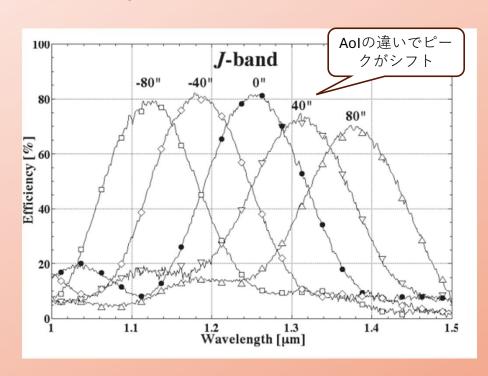

MOIRCSは低分散による夜光の影響のハンディが大きい。

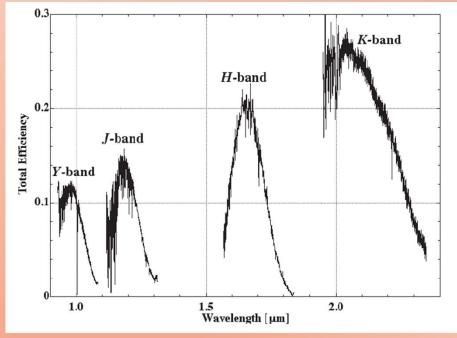

UNFAIR!

が、基本的にMOIRCSの客はMOSFIREへ。

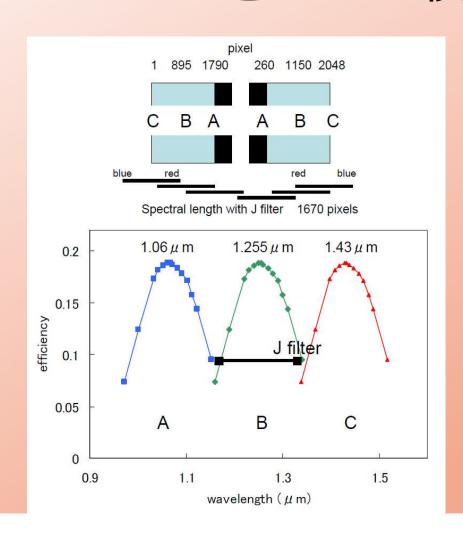
Our Efforts…the "VPH" Grism Project

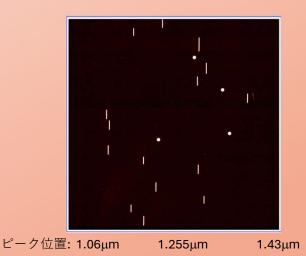
- The VPH (Volume-Phase Holographic) Grating Project started just after MOIRCS first light (2004), which was led by Dr. Ebizuka with MOIRCS team etc.
- Y, J, H, K grisms were all fabricated by 2010.
- They are High Efficiency!



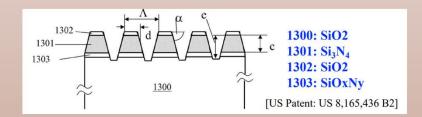


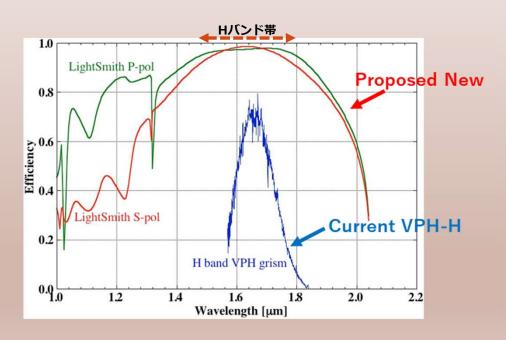
VPH Grism Project


Ebizuka et al (2011, PASJ, 63, S605)


Peakyながら、ピークのグリズム単体効率は~80%を実現。

VPH GrismsをMOSに使うのは難しい…



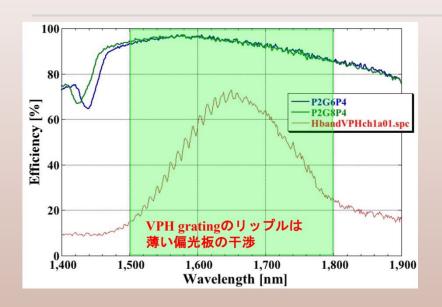

特定の波長の輝線を観測したい場合には、天体の位置によっては効率が低くなってしまう。

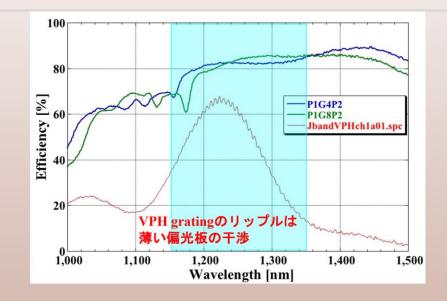
<u>観測者がマスクデザインする際に強い制約となる。</u>

Another Innovation: LightSmyth Grating

- 2017年海老塚氏による性能評価→衝撃的高性能。
- Hバンド帯の性能評価 → ピーク効率95%以上、Hバンド帯全部で極めて高い効率曲線。

LightSmyth Gating: H-band simulation

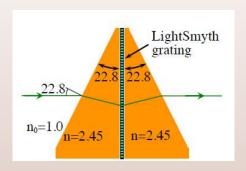

LightSmyth Gratings導入プロジェクト(~2018)


- LightSmyth Gratingの特徴
 - ✓ Very High Peak Efficiency
 - ✓ Wide Spectral Coverage
 - ✓ Minimum Dependence to the AoI and Polarization
 - \checkmark Tough (up to \sim 500°C).

光赤外天文学への応用例は当時無かった。

LightSmyth Gratings: Lab Measurements

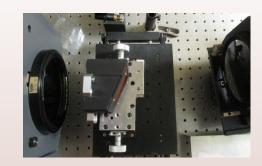
・ Hバンド: <u>カスタム製作</u>により、ピーク効率96%、全Hバンド帯に渡り90%以上の効率を実現!

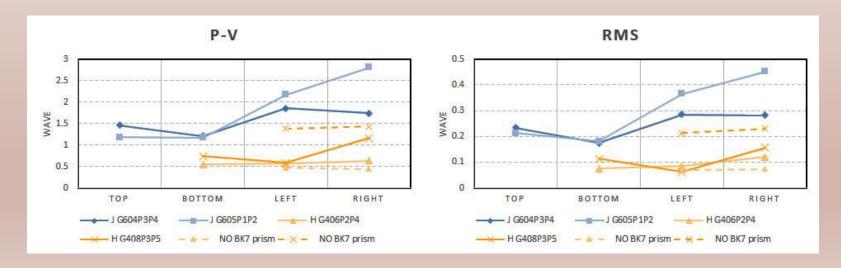

・ Jバンド:カタログ品を使用(予算不足)。 ピーク効率~85%、Jバンド帯の大部分を 80%以上でカバー。

Assembly

- グレーティング基盤の薄さが問題
 - Hで0.9mm、Jはわずか0.65 mm!
 - プリズムとグレーティングの熱膨張率が一桁違う(運用温度 120K)。

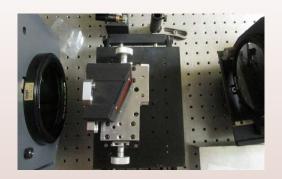
→グレーティングとプリズムを接着せず、両側から挟み込むだけのサンドイッチ構造とした。

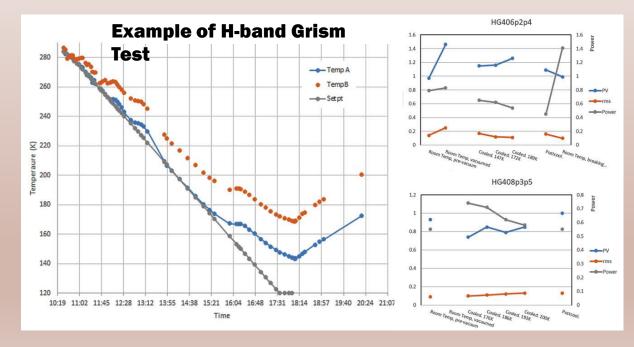

- → ゴーストの発生が予想
- → 0.5%以下のARコート&シムを挟んで空間方向にゴーストを逃がす。



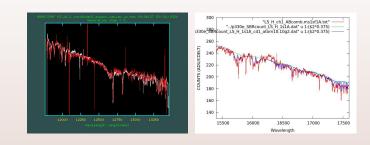
Laboratory Tests

Stability Tests

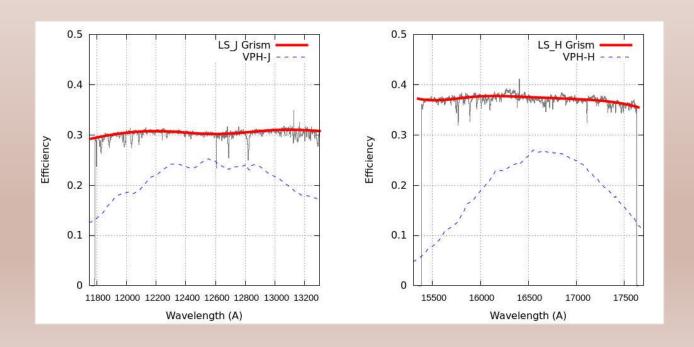

- Change of the Wavefront Error with Gravity Direction is Evaluated.
- LS_J is Worse than LS_H Due to Its Thinness.



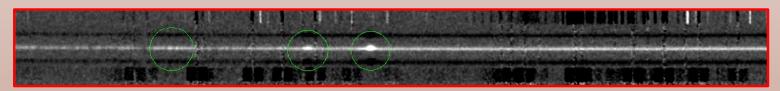
Laboratory Tests


Cooling Test

- Relatively stable during thermal cycle.
- LS-J is poorer due to its thinness.
- Degradation of the image quality by wavefront error is at most ~1 pix (worst) for LS_J, which is negligible under natural seeing.

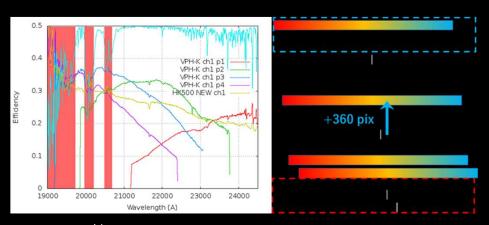


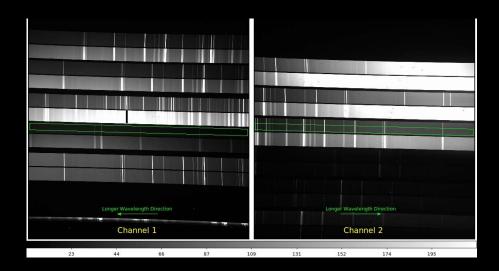
On-Sky TEST (July 2020)


- Beautiful and Great Sensitivity!
- Ghosts are visible but found to be negligible to the data.

LS-J & LS_H: Open-Use Started!

- ・2020年後期より共同利用公開正式スタート。
- ・が、半年後のMOIRCS休眠により2年間の運用中止・・・

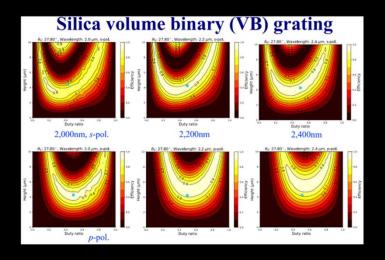

これからが本格的な運用のスタート

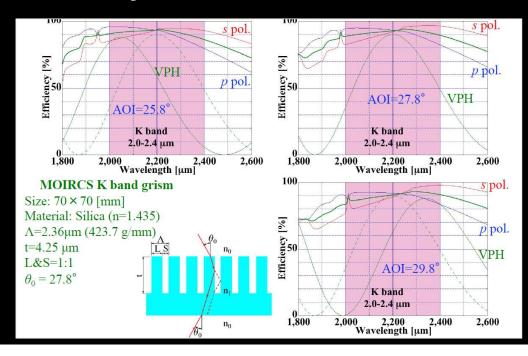

 $H\beta$ & [OIII] in QuickLook Spectra from LS_J grism (30 min). Image by courtesy of Dr. M. Schuramm (Rakshit et al. 2021, MNRAS, 504, L22).

We Go Further --- VB_K Project (2022~)

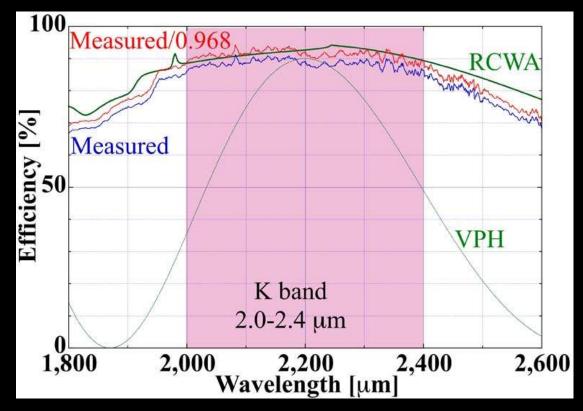
- Encouraged by the success of the LightSmyth grisms, we started the upgrade of the K-band medium-dispersion performance.
- Current VPH-K Grism has three issues: 1) Peaky transmission curve which has a
 dependence of AoI (=Slit Position). 2) Large shift of the spectra in spatial direction,
 and 3) ~1.5 deg tilt, causing significant loss of the detector area for science.

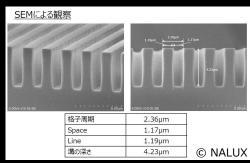
現状のVPH_K:Peaky, Large Spatial Shift, and tilt.



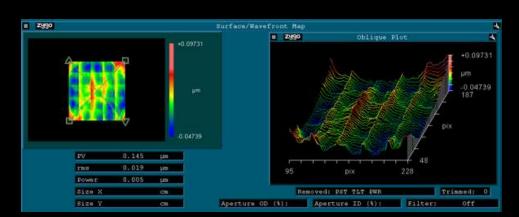

We Go Further --- VB_K Project (2022~)

 We make use of the Volume-Binary (VB) grating which has been developed by Dr. Ebizuka.

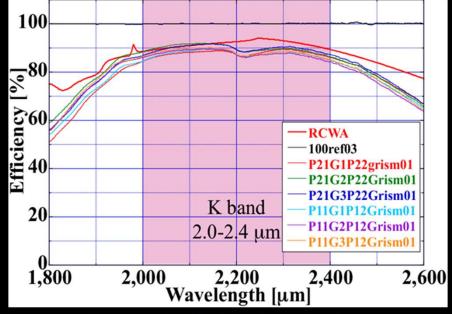

The simulation shows >85% efficiency across the whole K-band


window.

VB_K 試作:平均効率~90%実現!

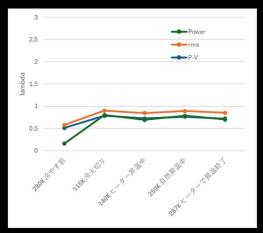

ULTIMATE-Subaru・所長留め置き金からの経費支援で実現

本製作も順調


グレーティング厚さ0.8mmはLS_Hと類似。 LS_H同様に<u>プリズムでサンドイッチにする</u>。

Zygoによる波面測定結果も奇麗で、Degradationは心配なし。

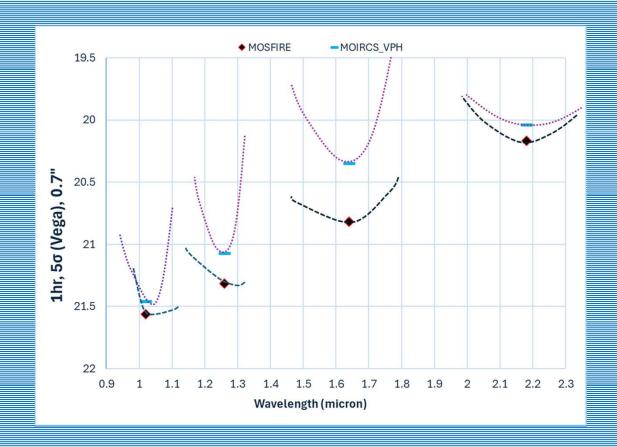
VBK 1, PV: 0.145μm, rms: 0.029μm



Spectral efficiencies of grisms

完成!

- 冷却試験も問題なし。波面も非常に安定していた。
- 重力方向の変化による波面の劣化も見られない。

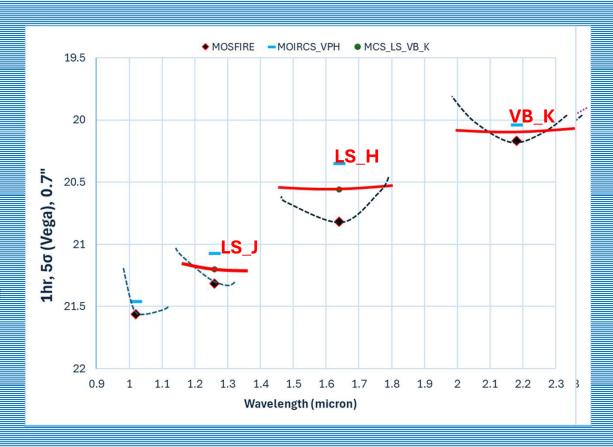


- 昨年9月暮れMOIRCSへのインストールも完了。
- 春の試験観測の機会に性能評価予定。

Updated Sensitivity Comparison with MOSFIRE

VPHの時代には実際 MOSFIREに追い付けなかっ た^(注)・・・。

(注)すばる主鏡面積はKeckの66%に 過ぎない事、MOSFIREはMOIRCSの後に 発展した高性能ARコーティングによっ てスループットが向上してる事に注意。

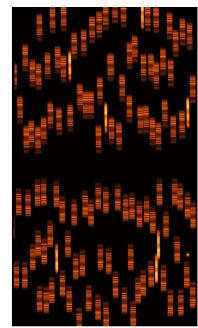


Updated Sensitivity Comparison with MOSFIRE

現在

- ・高効率広帯域化により、Keck MOSFIREに肉薄!
- ・VB_Kでは部分的に勝てる部分 さえあると期待。

MOIRCS中分散は使いやすいグリ ズムになった。


まとめ

- 近赤外分光においては、中分散分光能力が遠方銀河サイエンスへの能力向上の鍵。
- MOIRCSの競争力強化のために、新グレーティング技術を取り込んで中分散分光機能を強化してきた。
- YJHKの全帯域において高効率で観測できる装置になった。
- VB_Kのオンスカイ性能試験はこの春の予定。乞うご期待。

終わりに・・・

MOIRCSは~5年後に退役の可能性あり。 Promotion努力でScience回収を急ぎたい。

Please use MOIRCS!

~150 Objects Extreme MOS Observation